# Update on FAST RECYCLER STACKING

Chandra Bhat, Brian Chase,
Bill Foster, Hyejoo Kang, Jim Maclachlan,
Kiyomi Seiya, Phillip Varghese, Dave Wildman

## Fast Recycler Stacking

- Method of longitudinal stacking
  - Increases charge density in Booster batches by compressing them in time
  - May allow more batches stacked in MI
  - Will allow early tests of MI at higher beam currents
- Uses broadband "Arbitrary Waveform" RF system
  - Exists in RR; planned for longitudinal dampers in MI
- Advantages WRT Slip Stacking:
  - No emittance growth (in principle)
  - No problems with Beam Loading (debunched beams)

#### Fast Recycler Stacking: 1) Initial Condition



· Debunched Batch Captured in Barrier Pulses

#### Fast Recycler Stacking: 2) Ramped Waveform



- · Ramped waveform rotates phase space
- · Barrier Pulses keep batch ends under control

#### Fast Recycler Stacking: 3) Phase Space Rotation



- · Leading Particles Slowed Down and move inwards
- · Trailing Particles Sped Up, also move inwards

#### Fast Recycler Stacking: 4) Halfway Done



 Leading & Trailing particles are now halfway to their final destinations

#### Fast Recycler Stacking: 5) Reverse Ramp



 Ramp Reversal needed to eliminate energy correlation at end of process

#### Fast Recycler Stacking: 5) Anti-Rotate



 Reversed ramp rotates phase space distribution back towards horizontal

#### Fast Recycler Stacking: 5) Anti-Rotation Completed



 Energy correlation removed at end of batch compression process

#### Fast Recycler Stacking: 6) Final State



• Final configuration: half the time spread, twice the energy spread ot = 0 no emittance growth

#### First Tests in Recycler (Nov. 20)

- Recycler already has 2000V Arbitrary Waveform RF system, with controls
- Recycler does not have extraneous cavities
   (2.5 MHz, 7.5 MHz and 53 MHz) which
   might resonate up ("beam loading") and
   destroy the beam RF structure.
- 1. Debunch beam in MI
- 2. Compress the beam in Recycler
- 3. Transfer back to MI
- 4. Rebunch and Accelerate (...not done)

#### Recycler Broadband RF Cavity

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999



Figure 1: Schematic drawing of Recycler Wideband RF Cavity

Non-Resonant Cavity looks like 50-Ohm Load in parallel with a large Inductor

#### Wideband Power Amplifiers



Figure 2: Front and Rear views of Amplifier Research model 3500A100.

- Recycler has four of these amps, capable of generating +/-2000V or arbitrary waveform.
- Main Injector will soon buy 3 of these for longitudinal Dampers.









#### Remaining Tasks for RR Tests

- Understand Stacking Scientifically
  - Quantify emittance growth
  - Understand incoming beam properties
- Optimize Tuning
  - Push to higher currents
  - Compress Multiple Batches
  - Simulation work to recognize mis-tunings

# First Test in Main Injector (December 12)

- Patched together a 500 V barrier-bucket system in the Main Injector
  - "Green Bomb" (old broadband cavity in MI)
  - Spare Recycler Power Amplifier
  - Swiped arbitrary Waveform from Recycler
- Debunch beam in MI
  - Actually this is easier than transferring beam back and forth from the Recycler



#### Green Bomb & Longitudinal Kicker in Tunnel



## First Test in Main Injector



Barrier Buckets
 Function

 Batch compression (sort of) works

All with only
500V Arbitrary
Waveform in MI

#### 2<sup>nd</sup> Test in Main Injector



Attempt at 2-Batch to
 1-batch compression

• Dead RF Station made debunching impossible

 Re-try when Recycler LLRF available again

# 2.5 MHZ Transient Beam Loading Waveforms (GPJ)



- Adiabatic Coalescing requires 200~500V
- Easy to generate with broadband system
- 2.5MHz Transient Beam Loading Voltages larger
- Reinstall Cavity shorts on 2.5 MHz cavities (Jan.)

#### MI Longitudinal Damper Kick Calculated in FPGA Firmware

(Ashmanskas, Foster)



#### MI Hardware Tasks

- Dedicated Broadband System in MI
  - Green Bomb & spare RR amp
  - Switch to Damper amps and cavities long term
  - Need dedicated Arbitrary Waveform module
- Cavity Shorts on 53 MHz cavities (installed)
- Cavity shorts on 2.5 MHz cavities (Jan.)
- LLRF work for Debunching/paraphasing
- Damper able to control Coupled-Bunch oscillations during debunching?

### The Big Questions

- How will the Main Injector react to higher beam currents? 

  Find Out Soon
- How Much Arbitrary Waveform Voltage will be needed? 

  \*\*Are Damper Amps OK?
- How Efficient will Recapture and acceleration be? 

  \*\*NUMI Losses\*\*
- What will the final longitudinal emittance be? \*\*Example 2.2.\*\*

  \*\*Example 2.2.\*\*

  \*\*Example 3.2.\*\*

  \*\*Example 3.2.\*\*

  \*\*Example 3.2.\*\*

  \*\*Example 4.2.\*\*

  \*\*Example 3.2.\*\*

  \*\*Example 4.2.\*\*

  \*\*Example 3.2.\*\*

  \*\*Example 4.2.\*\*

  \*\*Example 4.2.